
#### Stratocumulus to Cumulus Transition CPT

#### Chris Bretherton (UW) and Joao Teixeira (JPL)

**Goal**: Improve the representation of the cloudy boundary layer in NCEP GFS and NCAR CAM5 with a focus on the subtropical stratocumulus to cumulus (Sc-Cu) transition

Low-level clouds (%), ISCCP, ANN



NCEP H. Pan (PI), J. Han, R. Sun

NCAR S. Park (PI), C. Hannay

JPL J. Teixeira (CPT lead PI), M. Witek

U. Washington C. Bretherton (PI), J. Fletcher, P. Blossey

UCLA R. Mechoso (PI), H. Xiao

LLNL S. Klein (PI), P. Caldwell

NOAA funded Aug. 2010 - 2013 (additional internal JPL and DOE funds)

#### **Motivations for CPT**

#### **NCEP**

- Vision: Can GFS become a unified operational weatherclimate model for daily to interannual forecasting & reanalysis?
- Diagnose and improve clouds in operational GFS
- Evaluate free-running coupled GFS with climate model metrics
- Use single-column GFS as testbed for new parameterization ideas (ShCu mods, pdf cloud fraction, EDMF turbulence)

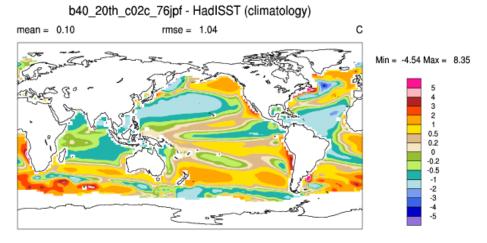
#### **NCAR**

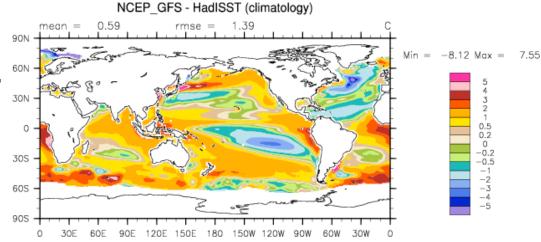
- CESM/CAM5 has new moist physics & aerosol parameterizations that change cloud climatology & feedbacks
- Their interaction is inadequately understood and suboptimal;
   CAM5 microphysics is complex, sensitive to model timestep

#### **CPT Current Main Tasks**

- a) Better coupled/uncoupled climate diagnostics for GFS (UCLA, NCEP, NCAR)
- b) GASS Sc/Cu cases with NCAR and NCEP SCMs, and LES (UW, NCAR, NCEP, JPL)
- c) Test SCM-suggested modifications in short coupled GFS runs (NCEP, UCLA, UW)
- d) Development/testing of PDF cloud and new convection/ turbulence schemes in NCAR (LLNL, NCAR)
- e) Development/testing of EDMF turb. param. in NCEP, NCAR (JPL, NCAR, UW, NCEP)

$$\overline{w'\varphi'} = -k\frac{\partial \overline{\varphi}}{\partial z} + M(\varphi_u - \overline{\varphi})$$


Siebesma & Teixeira, 2000


# Comparison of NCAR CESM1 and NCEP GFS

| Model                        | NCAR CESM1                                                | NCEP GFS           |  |
|------------------------------|-----------------------------------------------------------|--------------------|--|
| Atmosphere                   | CAM5 (2x2.5, L30)                                         | GFS (T126 L64)     |  |
| Boundary Layer<br>Turbulence | Bretherton-Park (09) UW Moist Turbulence                  | Han and Pan (11)   |  |
| Shallow Convection           | Park-Bretherton (09) UW Shallow Convection                | Han and Pan (11)   |  |
| Deep Convection              | Zhang-McFarlane<br>Neale et al.(08)<br>Richter-Rasch (08) | Han and Pan (11)   |  |
| Cloud<br>Macrophysics        | Park-Bretherton-Rasch (10) UW Cloud Macrophysics          | Zhao and Carr (97) |  |
| Stratiform Microphysics      | Morrison and Gettelman (08)  Double Moment                | Zhao and Carr (97) |  |
| Radiation / Optics           | RRTMG lacono et al.(08) / Mitchell (08)                   | RRTM               |  |
| Aerosols                     | Modal Aerosol Model (MAM)<br>Liu & Ghan (2009)            | Climatology        |  |
| Dynamics                     | Finite Volume                                             | Spectral           |  |
| Ocean                        | POP2.2                                                    | MOM4               |  |
| Land                         | CLM4                                                      | NOAH               |  |
| Sea Ice                      | CICE                                                      | MOM4               |  |

# NCEP Model Diagnostics (Xiao, Sun, Park)

- NCAR CESM 1.0 (coupled version of CAM 5.0, 200-yr run)
- NCEP GFS (coupled to MOM ocean model, 50-yr)
- NCAR AMWG diagnostic package adapted to GFS output
- Both models skillfully reproduce global circulation patterns.
- GFS avoids double-ITCZ bias.





# 50 yr C-GFS vs. 100 yr CESM1 climo: AMWG metrics

| cor coef: Space-Time               | cam3_5_fv1.9x2.5 | b40_20th_c02c_76jpf | NCEP_GFS |
|------------------------------------|------------------|---------------------|----------|
| cor coor. opaco Timo               | ANN              | ANN                 | ANN      |
| Sea Level Pressure (ERA40)         | 0.949            | 0.959               | 0.956    |
| SW Cloud Forcing (CERES2)          | 0.707            | 0.714               | 0.408    |
| LW Cloud Forcing (CERES2)          | 0.820            | 0.769               | 0.781    |
| Land Rainfall (30N-30S, GPCP)      | 0.785            | 0.811               | 0.751    |
| Ocean Rainfall (30N-30S, GPCP)     | 0.802            | 0.757               | 0.733    |
| Land 2-m Temperature (Willmott)    | 0.876            | 0.876               | 0.911    |
| Pacific Surface Stress (5N-5S,ERS) | 0.872            | 0.797               | 0.834    |
| Zonal Wind (300mb, ERA40)          | 0.967            | 0.960               | 0.957    |
| Relative Humidity (ERA40)          | 0.900            | 0.874               | 0.906    |
| Temperature (ERA40)                | 0.912            | 0.932               | 0.984    |

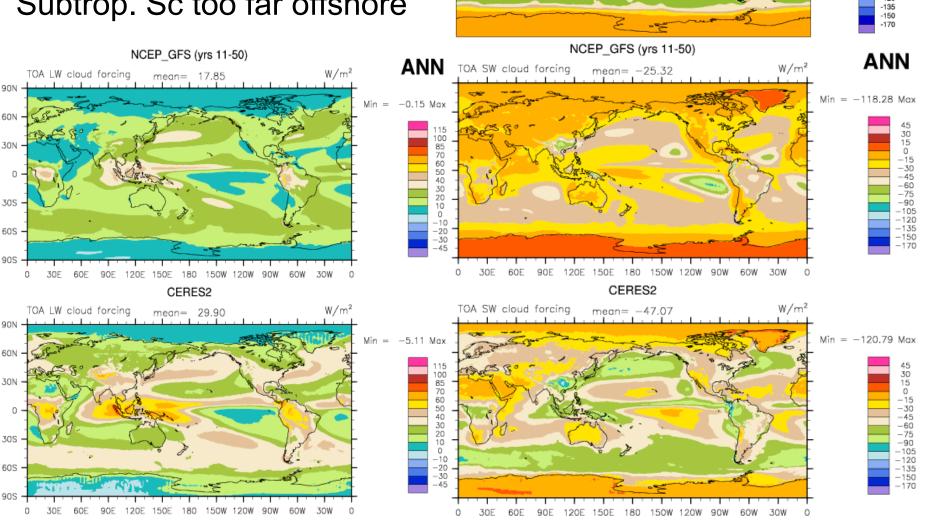
#### C-GFS pattern correlations better than CESM1 for

Pac surface stress, land surface temperature, 3D T/RH, but worse for

shortwave cloud forcing, rainfall.

Overall, C-GFS climatology is remarkably good for a weather-tuned model.

# GFS Problem Area 1: Global energy budget


| [W m <sup>-2</sup> ]      | GFS | NCAR | CERES2 |
|---------------------------|-----|------|--------|
| TOA F <sub>net</sub>      | 9.0 | -0.2 | 0.8    |
| TOA-surf $\Delta F_{net}$ | 4.3 | 0.0  |        |
| TOA SW <sub>net</sub>     | 259 | 238  | 240    |
| TOA SW <sub>clr</sub>     | 284 | 287  | 287    |
| SWCRF                     | -25 | -49  | -47    |
| TOA LW <sub>net</sub>     | 250 | 238  | 240    |
| TOA LW <sub>clr</sub>     | 268 | 260  | 269    |
| LWCRF                     | 18  | 22   | 30     |

Two large compensating biases in GFS:

- Net spurious energy loss in atmosphere [and ocean?]
- Shortwave, longwave CRF are 40-50% too low, allowing in 10 W m<sup>-2</sup> too much net radiation.

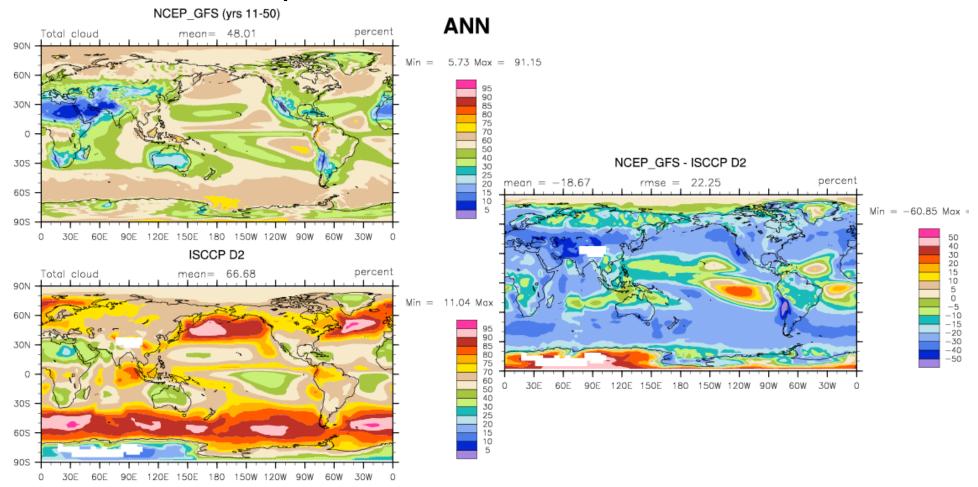
# GFS problem area 2

Big low bias in GFS cloud radiative forcing, esp. regions of deep high cloud. Subtrop. Sc too far offshore



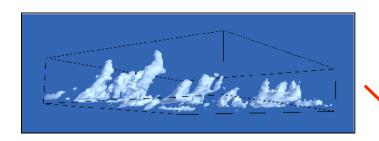
TOA SW cloud forcing

b40\_20th\_c02c\_76jpf (yrs 1948-1954)


mean= -48.57

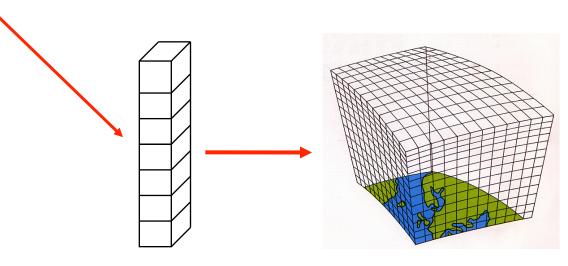
ANN

Min = -148.36 Max = -0.08


W/m<sup>2</sup>

# Main culprit: Too little cloud cover in GFS




Microphysics?
Cloud fraction scheme?

# Single-column testing and improvement of GFS



High-resolution model data:

Large Eddy Simulation (LES) models
Cloud Resolving Models (CRMs)

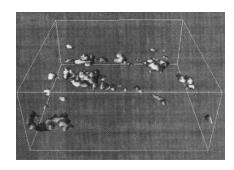


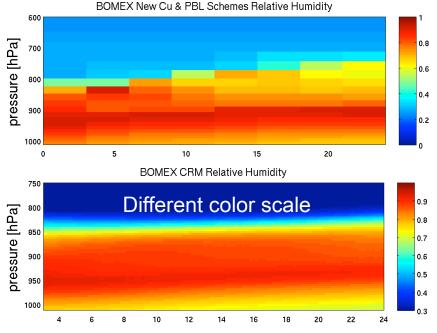
**Testing in Single Column Models:** 

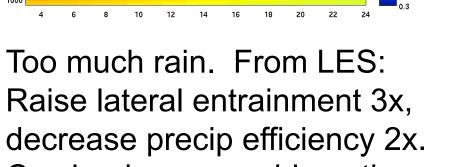
**Versions of Climate Models** 

3D Climate/Weather Models:

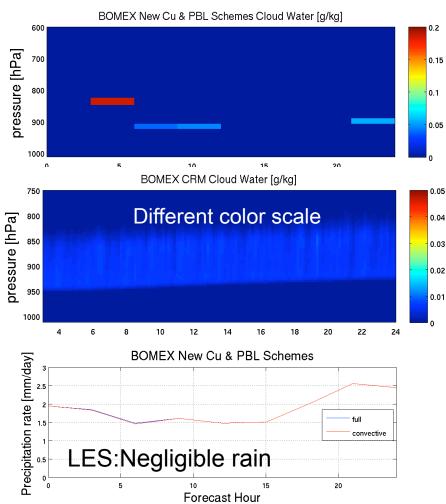
Evaluation and Diagnostics with satellite observations


LES/CRM models provide unique information on small-scale statistics


# Single-column modeling with GFS (Fletcher, Han, Sun, Blossey)

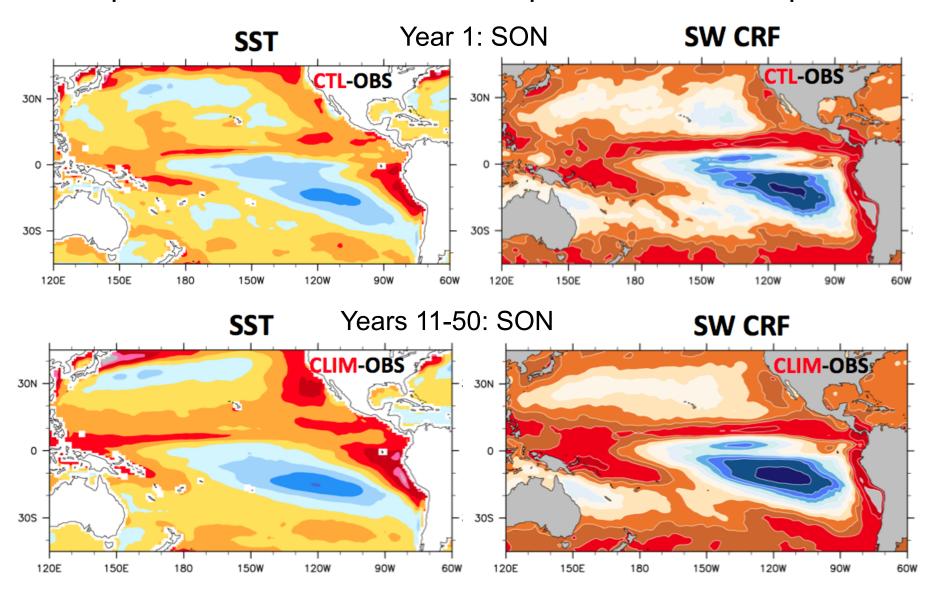

- Single-column GFS existed (pre-2010 physics) but not run outside NCEP, nor on intercomparison cases
- Technical issues:
  - Lack of GFS documentation or useful commenting
  - Code inflexible to changes in forcings, physics, outputs
  - Default outputs inadequate to diagnose parameterizations
- With effort, SC-GFS runs at UW with new physics and has been adapted to three GCSS cases (Sc, shallow Cu, Sc-Cu transition) for which LES and some observational comparisons exist.
- Results suggest simple model improvements that we have begun to test in both single-column and global coupled mode.

# BOMEX nonprecipitating trade Cu case Siebesma et al. 2003

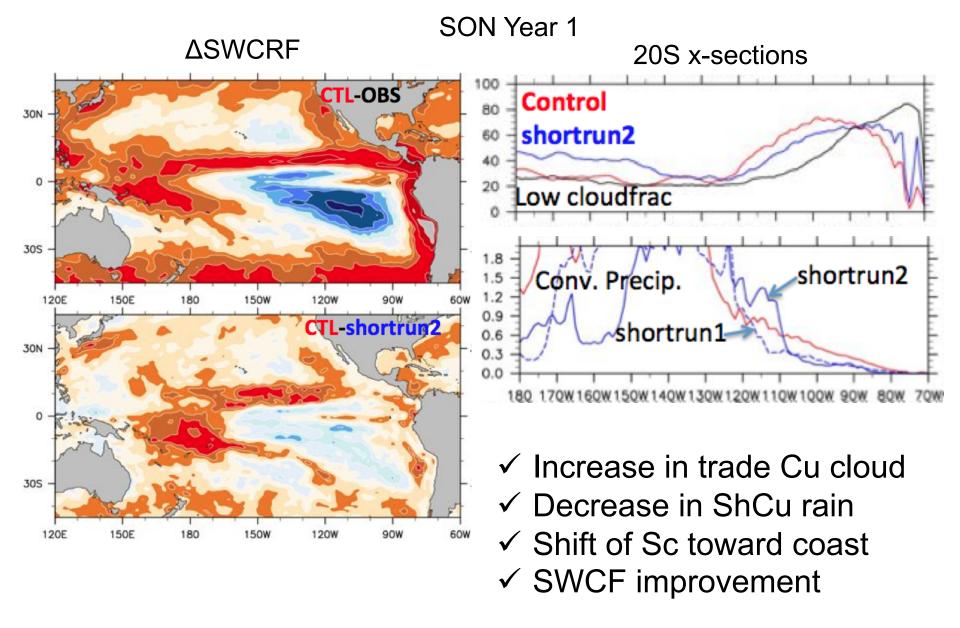









# 1 year coupled GFS sensitivity runs (Sun, Han, Xiao)

Tropical cloud/SST biases in coupled model develop fast



# Sensitivity to ShCu changes (shortrun2)



# TKE dissipation heating (Han)

$$\varepsilon = -K_h \frac{g}{\theta_v} \frac{d\theta_v}{dz} + K_m \left| \frac{d\mathbf{u}}{dz} \right|^2$$
buoyancy production shear production

| 4 month coupled GFS runs                                                            | TOA<br>(W/m²) | SFC<br>(W/m²) | Difference<br>(W/m²) |
|-------------------------------------------------------------------------------------|---------------|---------------|----------------------|
| CTL                                                                                 | 16.2          | 9.6           | 6.6                  |
| EXP1: same as shortrun2 in Heng (dissipative heating only at the model first layer) | 7.9           | 5.1           | 2.8                  |
| EXP2: same EXP1 but w/o dissipative heating                                         | 8.2           | 2.3           | 5.9                  |
| EXP3: same as EXP1 but w/ dissipative heating over whole atmospheric layer          | 7.8           | 6.9           | 0.9                  |

...atmospheric energy loss is now much smaller.

# Summary

- 1. New global climate diagnostics for CGFS:
- Many fields as good or better than CESM1 climate model
- Cloud rad forcing much too weak, biasing climate warm
- GFS energy leaks compensate this bias
- 2. GASS single-column cases test GFS physics
- Shallow Cu entrain too little, precipitate too much
- 3. Short coupled runs
- Fixing ShCu issues improves global coupled simulation
- Atm. energy leak fixed by adding dissipative heating.

#### CPT goals for next year:

- Improve microphysics to increase deep cloud
- Improve Sc entrainment formulation to enhance coastal Sc
- Test EDMF turb. for cloud-topped boundary layers.